ar X iv : m at h - ph / 9 90 30 19 v 1 9 M ar 1 99 9 Multidimensional Baker - Akhiezer Functions and Huygens ’ Principle

نویسندگان

  • O. A. Chalykh
  • M. V. Feigin
  • A. P. Veselov
چکیده

A notion of rational Baker-Akhiezer (BA) function related to a configuration of hyperplanes in C n is introduced. It is proved that BA function exists only for very special configurations (locus configurations), which satisfy certain overdetermined algebraic system. The BA functions satisfy some algebraically integrable Schrödinger equations, so any locus configuration determines such an equation. Some results towards the classification of all locus configurations are presented. This theory is applied to the famous Hadamard's problem of description of all hyperbolic equations satisfying Huygens' Principle. We show that in a certain class all such equations are related to locus configurations and the corresponding fundamental solutions can be constructed explicitly from the BA functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 9 90 90 25 v 1 2 1 Se p 19 99 The symmetries of the Manton superconductivity model

The symmetries and conserved quantities of Manton's modified superconductiv-ity model with non-relativistic Maxwell-Chern-Simons dynamics (also related to the Quan-tized Hall Effect) are obtained in the " Kaluza-Klein type " framework of Duval et al. 1. Introduction Recently [1], Manton proposed a modified version of the Landau-Ginzburg theory of superconductivity. His equations, defined on (2 ...

متن کامل

ar X iv : m at h - ph / 9 90 50 22 v 1 2 7 M ay 1 99 9

K-theory allows us to define an analytical condition for the existence of 'false' gauge field copies through the use of the Atiyah-Singer index theorem. After establishing that result we discuss a possible extension of the same result without the help of the index theorem and suggest possible related lines of work.

متن کامل

ar X iv : m at h - ph / 9 90 30 18 v 1 9 M ar 1 99 9 Gauge theory of disclinations on fluctuating elastic surfaces

A variant of a gauge theory is formulated to describe disclinations on Riemannian surfaces that may change both the Gaussian (intrinsic) and mean (extrinsic) curvatures, which implies that both internal strains and a location of the surface in R 3 may vary. Besides, originally distributed disclinations are taken into account. For the flat surface, an extended variant of the Edelen-Kadi´c gauge ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999